932 research outputs found

    Local Hall effect in hybrid ferromagnetic/semiconductor devices

    Full text link
    We have investigated the magnetoresistance of ferromagnet-semiconductor devices in an InAs two-dimensional electron gas system in which the magnetic field has a sinusoidal profile. The magnetoresistance of our device is large. The longitudinal resistance has an additional contribution which is odd in applied magnetic field. It becomes even negative at low temperature where the transport is ballistic. Based on the numerical analysis, we confirmed that our data can be explained in terms of the local Hall effect due to the profile of negative and positive field regions. This device may be useful for future spintronic applications.Comment: 4 pages with 4 fugures. Accepted for publication in Applied Physics Letter

    Condensed ECM-based nanofilms on highly permeable PET membranes for robust cell-to-cell communications with improved optical clarity

    Get PDF
    The properties of a semipermeable porous membrane, including pore size, pore density, and thickness, play a crucial role in creating a tissue interface in a microphysiological system (MPS) because it dictates multicellular interactions between different compartments. The small pore-sized membrane has been preferentially used in an MPS for stable cell adhesion and the formation of tissue barriers on the membrane. However, it limited the applicability of the MPS because of the hindered cell transmigration via sparse through-holes and the optical translucence caused by light scattering through pores. Thus, there remain unmet challenges to construct a compartmentalized MPS without those drawbacks. Here we report a submicrometer-thickness (similar to 500 nm) fibrous extracellular matrix (ECM) film selectively condensed on a large pore-sized track-etched (TE) membrane (10 mu m-pores) in an MPS device, which enables the generation of functional tissue barriers simultaneously achieving optical transparency, intercellular interactions, and transmigration of cells across the membrane. The condensed ECM fibers uniformly covering the surface and 10 mu m-pores of the TE membrane permitted sufficient surface areas where a monolayer of the human induced pluripotent stem cell-derived brain endothelial cells is formed in the MPS device. The functional maturation of the blood-brain barrier (BBB) was proficiently achieved due to astrocytic endfeet sheathing the brain endothelial cells through 10 mu m pores of the condensed-ECM-coated TE (cECMTE) membrane. We also demonstrated the extravasation of human metastatic breast tumor cells through the human BBB on the cECMTE membrane. Thus, the cECMTE membrane integrated with an MPS can be used as a versatile platform for studying various intercellular communications and migration, mimicking the physiological barriers of an organ compartment

    Efficient Ruddlesden-Popper Perovskite Light-Emitting Diodes with Randomly Oriented Nanocrystals

    Get PDF
    Ruddlesden-Popper phase (RP-phase) perovskites that consist of 2D perovskite slabs interleaved with bulky organic ammonium (OA) are favorable for light-emitting diodes (LEDs). The critical limitation of LED applications is that the insulating OA arranged in a preferred orientation limits charge transport. Therefore, the ideal solution is to achieve a randomly connected structure that can improve charge transport without hampering the confinement of the electron-hole pair. Here, a structurally modulated RP-phase metal halide perovskite (MHP), (PEA)(2)(CH3NH3)(m-1)PbmBr3m+1 is introduced to make the randomly oriented RP-phase unit and ensure good connection between them by applying modified nanocrystal pinning, which leads to an increase in the efficiency of perovskite LEDs (PeLEDs). The randomly connected RP-phase MHP forces contact between inorganic layers and thereby yields efficient charge transport and radiative recombination. Combined with an optimal dimensionality, (PEA)(2)(CH3NH3)(2)Pb3Br10, the structurally modulated RP-phase MHP exhibits increased photoluminescence quantum efficiency, from 0.35% to 30.3%, and their PeLEDs show a 2,018 times higher current efficiency (20.18 cd A(-1)) than in the 2D PeLED (0.01 cd A(-1)) and 673 times than in the 3D PeLED (0.03 cd A(-1)) using the same film formation process. This approach provides insight on how to solve the limitation of RP-phase MHP for efficient PeLEDs.

    ZnO nanopowder derived from brass ash: Sintering behavior and mechanical properties

    Get PDF
    The present investigation studied the recycling of zinc from brass ash which is a secondary product produced during the brass smelting process. A retiring cycle was devised to produce high-purity ZnO nanopowders. Recovery of > 90 wt% of the total zinc available was achieved after the calcination of brass ash at 700 °C and a multistage hydrometallurgical treatment at room temperature. ZnO powder produced by the developed method was analyzed by X-ray diffraction, transmission electron scanning microscopy, ICP-AES and BET analysis. The ZnO nanopowder obtained from the brass ash was well dispersed and the size of the individual particles was in the range of 30–50 nm. The purity of the powder was 99.83 wt%, and the surface area was about 30.5 m2/g. A relative density level of about 98.1% was reached with ZnO pellets sintered at 1300 °C

    Digital Signal Processing

    Get PDF
    Contains an introduction and reports on fifteen research projects.National Science Foundation FellowshipU.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)National Science Foundation (Grant ECS 84-07285)Sanders Associates, Inc.U.S. Air Force - Office of Scientific Research (Contract F19628-85-K-0028)AT&T Bell Laboratories Doctoral Support ProgramCanada, Bell Northern Research ScholarshipCanada, Fonds pour la Formation de Chercheurs et /'Aide a la Recherche Postgraduate FellowshipCanada, Natural Science and Engineering Research Council Postgraduate FellowshipAmoco Foundation FellowshipFannie and John Hertz Foundation Fellowshi

    Digital Signal Processing

    Get PDF
    Contains an introduction and reports on seventeen research projects.U.S. Navy - Office of Naval Research (Contract N00014-77-C-0266)Amoco Foundation FellowshipU.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)National Science Foundation (Grant ECS80-07102)U.S. Army Research Office (Contract DAAG29-81-K-0073)Hughes Aircraft Company FellowshipAmerican Edwards Labs. GrantWhitaker Health Sciences FundPfeiffer Foundation GrantSchlumberger-Doll Research Center FellowshipGovernment of Pakistan ScholarshipU.S. Navy - Office of Naval Research (Contract N00014-77-C-0196)National Science Foundation (Grant ECS79-15226)Hertz Foundation Fellowshi

    Digital Signal Processing

    Get PDF
    Contains table of contents for Part III, table of contents for Section 1, an introduction and reports on seventeen research projects.National Science Foundation FellowshipNational Science Foundation (Grant ECS 84-07285)National Science Foundation (Grant MIP 87-14969)U.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)Scholarship from the Federative Republic of BrazilU.S. Air Force - Electronic Systems Division (Contract F19628-85-K-0028)AT&T Bell Laboratories Doctoral Support ProgramCanada, Bell Northern Research ScholarshipCanada, Fonds pour la Formation de Chercheurs et I'Aide a la Recherche Postgraduate FellowshipSanders Associates, Inc.OKI Semiconductor, Inc.Tel Aviv University, Department of Electronic SystemsU.S. Navy - Office of Naval Research (Contract N00014-85-K-0272)Natural Sciences and Engineering Research Council of Canada, Science and Engineering Scholarshi

    Prefoldin 5 and Anti-prefoldin 5 Antibodies as Biomarkers for Uveitis in Ankylosing Spondylitis

    Get PDF
    Objective: Uveitis is the most common extra-articular manifestation of ankylosing spondylitis (AS), for which no diagnostic biomarkers have been identified. This study was conducted to identify biomarker for uveitis in AS.Methods: To identify autoantibodies associated with uveitis in AS, we performed human protein microarray analysis using sera derived from various autoimmune diseases and ELISA analysis of sera derived from AS and rheumatoid arthritis patients. In the curdlan-induced SKG mice model, ophthalmic examination was performed at week 8 post-immunization and histologic examination of the ocular lesions performed at week 16 post-immunization. Serum levels of target antibodies were assessed at various time-points. To evaluate the functional role of specific autoantibodies, an in vitro apoptosis assay using ARPE-19 cells was performed.Results: Reactivity against prefoldin subunit 5 (PFDN5) was identified in AS with uveitis. Levels of anti-PFDN5 antibodies and PFDN5 in sera from AS with uveitis patients were significantly higher than those in AS without uveitis. At week 8, half of curdlan-treated SKG mice developed anterior uveitis, while all of them developed histologically confirmed uveitis at week 16. The levels of anti-PFDN5 antibodies increased over time in the sera of curdlan-treated SKG mice along with increased expression of PFDN5 and apoptosis in the ocular lesions. Knockdown of PFDN5 in ARPE19 cells resulted in increased apoptosis, suggesting a protective role of PFDN5 against cell death in uveitis.Conclusion: AS patients with uveitis have increased levels of anti-PFDN5 antibodies, and our findings suggest that anti-PFDN5 antibodies could provide a biomarker for uveitis in AS

    Crystal Facet Engineering of TiO2 Nanostructures for Enhancing Photoelectrochemical Water Splitting with BiVO4 Nanodots

    Get PDF
    Highlights Two types of BiVO4/TiO2 heterostructure photoanodes comprising TiO2 nanorods (NRs) and TiO2 nanoflowers (NFs) with different (001) and (110) crystal facets, respectively, were designed. The higher photoactivity of BiVO4/TiO2 NFs than BiVO4/TiO2 NRs was attributed to the improvement of charge separation by the TiO2 NFs. The formation of type II band alignment between BiVO4 nanodots and TiO2 NFs expedited electron transport and reduced charge recombination.Abstract Although bismuth vanadate (BiVO4) has been promising as photoanode material for photoelectrochemical water splitting, its charge recombination issue by short charge diffusion length has led to various studies about heterostructure photoanodes. As a hole blocking layer of BiVO4, titanium dioxide (TiO2) has been considered unsuitable because of its relatively positive valence band edge and low electrical conductivity. Herein, a crystal facet engineering of TiO2 nanostructures is proposed to control band structures for the hole blocking layer of BiVO4 nanodots. We design two types of TiO2 nanostructures, which are nanorods (NRs) and nanoflowers (NFs) with different (001) and (110) crystal facets, respectively, and fabricate BiVO4/TiO2 heterostructure photoanodes. The BiVO4/TiO2 NFs showed 4.8 times higher photocurrent density than the BiVO4/TiO2 NRs. Transient decay time analysis and time-resolved photoluminescence reveal the enhancement is attributed to the reduced charge recombination, which is originated from the formation of type II band alignment between BiVO4 nanodots and TiO2 NFs. This work provides not only new insights into the interplay between crystal facets and band structures but also important steps for the design of highly efficient photoelectrodes
    corecore